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Abstract

A supply chain system of dust-in-timeproduction facility consists of raw material suppt, manufacturers and
retailers where inventory of raw materials andsfirdd goods are involved, respectively. This resefircuses on
reducing the idle time of the production facilitiby assuming that the production of succeedingecythrts
immediately after the production of preceding cydfereality, the inventory of a supply chain systenay not be
completely empty. A number of products may be laftoafter the deliveries are made. These leftoweentories
are added to the next shipment after the produdfarquired amount to makeup a complete batchstiggment.
Therefore, it is extremely important to search daroptimal strategies for these types productiailii@s where
leftover finished goods inventory remains after fireal shipment in a production cycle. Consideritigese
scenarios, an inventory model is developed fomgperfect matching condition where some finisheddgo@mains
after the shipments. Based on the previous obseryahis research also considers a single faditigt follows JIT
delivery and produces multiple products to sat@fgtomers’ demand. For this problem a rotationalecynodel is
developed to optimize the facility operations. Bqgthoblems are categorized as mixed integer norafine
programming problems which are to be solved to fiptimum number of orders, shipments and rotatiayale
policy for multiple products. Also, this solutioriliwead to estimate the optimum production quangihd minimum
total system cost.
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1. Introduction

A production facility (such as refinery, aluminuranwversion industry) produces multiple products framsingle
type raw material (crude oil, large aluminum sheets) and shipped to customers according to thexirand. In the
supply chain system of these categories of produdtcilities, the raw materials are ordered frv $uppliers, and
process the raw material into multiple finished darets and deliver to the buyers or retailers. Aglarfacility
supply chain system is represented in Figure 1tt@rtast few decadesist-in-time(JIT) philosophy has played an
important role in supply chain systems such asnthaufacturing sectors. The successful implememtsataf JIT
phenomena are frequent shipment of high qualityspar the buyers and ordering raw materials in bivatiches
whenever required to process finished products.
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Figure 1: Single-supplier, multi-product and Singleyer supply chain system

Hill [3] modified the ordering policy of the raw reial by allowing a single order for multiple proation cycles
when the inventory cost for the raw material is mlmwer as compared to the ordering costs in eactugtion
cycle. Later, Parija and Sarker [5] extended thigleh to a multi-retailer system and determinedpttogluction start
time and proposed a method that determines the dgalgth and raw material order frequency for agloamge
planning horizon. Sarker and Diponegoro [6] studddexact analytical method to obtain an optimdicgdor a
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more general class of problem with multiple suppglienon-identical buyers, finite production rated afinite
planning horizon. Later, Khan and Sarker [4] depelb another model for a manufacturing system widliTaraw
material supply and deliverparker and Khan [7] proposed a model that happtméd minimizing inactive time
of the production facility. Biswas and Sarker [X¥pposed a supply chain model where they considéradthe
production or uptime starts immediately after thedoiction or uptime of the preceding cycle. Usihig tconcept
they formulated the inventory model with a perfe@tching situation. Biswas and Sarker [2] propoaedther
supply chain model considering same concept wiibeiriect matching situations. Both papers consideréatility
where a single product is being produced. In ngdktirge production industries (refineries, papdtsmsugar mills,
Aluminum conversion etc.) do not let their prodoantsystem be idle and their finished goods invensetdom falls
to zero. This research deals with single facilittydizing supply chain system composed of prodnatidth multiple
products, single supplier and single buyer opegatimder JIT delivery where a leftover inventory eeéns at the end
of all possible shipmentsniperfect matching Also, the research considers that the produaifoa product starts
immediately after the production of the previousdarct and the setup time resulting idle time miaition. The
goal of this research is to minimize the total egstcost of a supply chain system that consistsupplger,
manufacturer and retailer by evaluating the optimmatational cycle of the products.

2. Model Description and Formulation

In a single facility lot sizing model, multiple ptocts are produced in a time span where complatiothe

production of any product can meet the customensadie during that time span. After the time spanpirazluct
goes to production again to meet the next time .spais time span is referred as rotational cyclesiAgle
production facility produceK products with a constant demandDy units per year for produét(wherek = 1, 2,
...,K), andk product is produced at a constant rat®,pfinits per year to satisfy the demabgk. All products are
delivered at a fixed amount & units after every time units. According to the assumption, producta$ all k

K
items must meet customers’ demand io(DFk /' P)<1. Also, due to rotational cycle policy, all prodsietith the

k=1
same production cycle tim&g, and a lot of each product is produced duringtihie period. Due to the rotational,
the products are produced in a fixed order, whictepeated from cycle to cycle. Without permittamy shortages,
it is a problem to determine the time of productan optimum number of units to produce for eaemitvhich
was defined as rotational cycle by Johnson and dtanery [8]. In their research they considered glsifiacility
lot sizing model based on classical inventory mobreteal life, the single production facility, amber of products
are always left-over after the possible delivedes made. These left-over amounts are added toekteshipment
after the production of required amount to makeaupomplete batch. An illustration may be observedetail
stores such as Albertson’s, Target, Wal-Mart, €lis research incorporates the inventory model dfthdelivery
and imperfect matching inventory situation. The atioh used to develop the model is defined wherd use
throughout the research.

2.1 Raw Material Inventory and Cost Function

To develop the mathematical model the assumptionsidered are (a) production rates are constanfiaitel and
greater than the demand raties> Dgy, (b) production of alK items must meet customers’ demand, (c) production
facility considers as just-in-time (JIT) delivergdasupply of finished products and raw materiagspectively, (d)
production run of a product starts immediately raftee uptime or production run of previous prodantd setup
time, (e) multiple products are produced in eadhti@nal cycle, and (f) a fixed quantity is leftevafter required
shipments and carried over to the succeeding cycle.

An inventory diagram of a single facility lot sigirmodel is presented in Figure 2. The pattern of maaterial
inventory is shown in Figure 2(a) whe@g is the raw materials required from the supplienrdyTe; time period.
TheseQg units are ordered imy, batches in instantaneous replenishment@gi, units. It is assumed that each unit
of product 1 produced requirésunits of raw material, so th@'r; = f;Qg. Again, in this research the raw materials
are ordered and converted to finished goods duthiegproduction time or uptimép;. Thus, the time weighted
inventory,I of raw material held in a cycle of product lisegivby

Tr =QRTr/(2m) = Qe T /(2m §)= Gu/(2m §T), (1)
where Qg / Qg = Dg/ D= fio Tpy = Qc/ R andk =1,...K.
Therefore, the total cost for the raw matekiahn be expressed using Equation (1) as

TCri = DriKo W/ (Qr M+ TH &= mD el U Q At Pt A2 m\f A, )
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2.2 Finished Goods Inventory and Cost Function
According to the JIT delivery schedule, fixed amiobahx, units of produck will be delivered after everly, time
units. The lot size for produdk must be equal to the demand during the rotatiogelle, T¢, without permitting
shortages as

Ql,:k :(n']()&"' 'Ok): TC DFk' (3)
According to Figure 2(b), at pointAproduction of product 1 starts wit®, units/yearafter Ts; time units and
produces exactl®'r; (= niX; + lp1) amount to delivex; afterL, time units. Hence, during tinme, — Ts; time the
quantity produced %o, at the rate oP;, so thatly; + (X;—o1)P1 > X;. The first shipment of; units of product 1
can be delivered at point, Bfter L, time units combining with the left over inventorfylg, from the previous cycle.
Again, production continues and the inventory kailgh asP; > Dg; and another shipment &f amount is made at
point G afterL; time units.
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Figure 2: Rotational cycle inventory formation

Thus, after the uptim®&p; and point E, production of product 1 stops and the inventamyfs a saw-tooth pattern.
After point B, X, amount is shipped in evety time units to the customer from built-up inventdiyring downtime
Tp:. During downtimeTp,, the inventory forms as stair case pattern. At thd ef Tp; time and all possible
shipmentd; amount of inventory left out in the warehousexas lo;, which is carried over to the next production
cycle of product 1. At the end @f, and afterTs,, the production of product 2 starts and delivgrsnits of product
2 afterL, time units [Figure 2(c)]. The production of produtcontinues untilTp, time units followed by the
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downtime ofTp,. Thus, the process continues for prodkidtom point A to E according to Figure 2(d). It should
be noted that durindr, and Tpk, the amount of product 2 and productproduced, respectively, must satisfy
customers’ demand of these products throughoutioot cycle, Tc. After Tpk, the production of product 1 starts
again. Figure 2(b) is used to calculate the aveaagband inventory of the finished goodig, Ip;, andlp; are the
total inventory, uptime inventory and downtime intay for product 1, respectively. Therefore, tbat inventory
can be calculated as

It1 = lpi—lp1 (3
From Figure 2(b), it can be found that
lp =X Tpy /24 X T+ logle- (4)
Using Equation (3) upon simplification and the int@y can be found as
lp =QRA[3/(2Dg1) - 1/P 1= 1 o QF 1/ (2Dg )= 1/ P+ (I o~ QF )T . (5)
Again, the total inventory shipped can be calcddtem Figure 2(b) as
Ip =L+ 2L+t (0= Dl = n(ni= DLy / 2= & (nr /2R 4 (6)

wherelL; = X; /Dg;.
Hence, the average inventory for produdfT;, and time period[¢, can be calculated by combining and
simplifying Equations (3), (5) and (6) as

QI'ZI DFl(Qllzl I01) I01
- Q' +4]4,+X 2D¢ I - lg; + X, —2Dg T
2D|:1 F1 01 1 F1'S1 F?L 2D|:1 01 1 F1'S1

Using Equation (7), the total cost function of pwotk can be expressed as
TG (Q) :{ Drx Ksk— lo H mil o+ X 2D F S}/Z} 1Q ¢
+Qr He (1- Dpy / B) 12+ HFk{ 4o+ Xt D o /Py ZTsQ} 12 8
Using Equations (2) and (8), the total cost funttid finished produck can be expressed as
TG (Qh, M) = G He/(2m, Fl)<)+{ m Dy Bt D Ksio kHF(< 6t Xg2 DFJMZ}/ Q
+QkHp (1= Dgy / By) 12+ HFk{ Ao i+ Xt D o /Py ZTsQ} 12. (9)

_DF 1(Q|': 1_I 0) )
R

(7)

ITl

2.3 Objective Functions and its Constraints
Combining all costs for aK products and replacin@’s, from Equation (3), it can be written as

CT(Tc,n],---'n"kF;[? B, Ho /2m (R m K/ B TR HE D/ R/2

HKg = loH a(loxtX—2D 2T ) /(2D U/T +H {4l #x #D (I, (P 2T § /2]. (10)

Before minimizing the problem, it is necessarytialy the constraints related to the rotational epdlicy, such as
the setup times the number of raw material delégefor each product. If the setup time for produistTs, then the
total setup time per cycle and the total productiore per cycle must be smaller or equal to thatimhal cycle
length. Therefore, the following constraint dawill be

K
T2 [Ty + Qu/ R (11)
k=1
ReplacingQ’s, by using Equation (3), it can be re-written as
K K
T, > ZTSk/(l—Z[ D,/ Pk]j =T, 20. (12)
k=1 k=1

Also, the number of raw material deliveng, for productk cannot be less than 1 and should be an integeer
Hence, the constraint an, is

m =1andis aninteger, fér= 1,2,K, (13)
Using these two constraints defined in Equatio2y éhd (13), the objective function can be formediahs
K
Minimize:  C; =) [ByTe/ m+ Bym/ T+ B+ ByY T+ BY (14)
k=1
Subject to: T 2T, 20, (14a)
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m 21andis aninteger, fér= 1,2,K, (14b)

Therefore, the problem becomes a mixed integerlimea programming problem and the solution proceda this
problem is discussed here.

3. Solution Technique of Rotational Cycle Problem

The formulation of the single facility lot-sizinggblem for imperfect matching system can be caiegdras a
mixed-integer non linear programming problem whegs are integer andc is a real variable and the number of
variables are + 1). Due to formulation of the problem, it caniat solved using derivatives and a closed form
solution cannot be determined. Using the Divide @odiquer rule, the objective function is dividetbitwo parts
(a) rotational cycle for finished products, andfojnber of raw material orders. The rotational eyfor the finished
products T¢) is the same for the raw material delivery, beeah® raw materials are delivered from the supjblier
instantaneous replenishments. Again, the raw nadtien a produck is ordered when the finished prodlgjoes in
production. The solution procedures are shown l&sifs:

(a) Rotational cycle for finished products
To solve the rotational cycle policy for the panigshed product supply, the cost function from Bgua(14) can be
divided as

K
Minimize: Cy (T.) = Y[ T Do He@= Dee/ R)/2+{Kg= by H o I = X,=2D T Q/(2D }/ T
k=1

+He {410k + Xy + Do/ P=2T g0}/ 2 ] (15)
Subjectto:T, =T, =0 (15a)

It can be shown that the Equation (15) is a coriuektion forTc; therefore, it can be solved by differentiatioritwi
respect tdl¢c and equate it to zero, which yields

T - Jzi[Ksk—le 0wt X,~2D T /(2D 31/ 3D H {1-D 4P) (16)

wherek = 1, ...,K. Equation (16) has to satisfy the constraint giWeBquation (15a). Using the optimal rotational
cycle T'¢, the number of shipments for different finishedguct can be obtained from Equation (3). The odtima
rotational cycle]T ¢ is used to solve the optimal number of ordergdor materials.

(b) Number of raw material orders
As the raw materials order policy is instantanedlus,production rate for the raw materiabkistherefore, this also

satisfies the condition for rotational cycle. Nowapplying the value ofT. from Equation (17), the total
cost/objective function for raw materiakan be written as [from Equation (14)]

Minimize: Ce(m) = MK,/ T+ B B H /2 m R 17)
Subject to: m, 21 and integerl]k= 1,.K (17a)
This objective function [Equation (17)] is conveax  and the objective function is a discrete functianich

cannot be solved using differentiation. Hence,itlgeiction method is used to solsg. Using the induction method
in Equation (17), the boundary condition fal is can be evaluated as

[+ an, -1/2]<m <| i+ @, +1/2] (18)

where A, =T DZ H, /(2f,PK, ), andk= 1,2,..K . In addition, Equation (19) has to satisfy the staaint given
in Equation (17a). Applying the boundary conditiarEquation (18) the optimal objective function demevaluated

as well as the optimum number of orderg for raw materiak, wherek = 1, ...,K. Hence, optimum total cost for
all raw materials can be expressed as

cR(ni.---,nw:ki_[r*m ./ T+ T By /2T £ R (19)

As discussed before, bothn and T, is may not be globally optimal. Therefore, anotfierward search is
conducted using Equation (14), starting from thestaints forT ¢ andm, [given in Equations (14a) and (14b)]
and with step sizes 0.01 and 1, respectively, taluate the optimalT™ and m® that will minimize the

C (T2, 1f™, .., ™).
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4. Numerical Computations of Optimum Rotational Cycle

Six products, presented in Table 1, are being pmdlwn a single facility manufacturlng system witfi delivery.
Using these data from Table 1 and Equation (1@)Ttb can be found a¥c=0.56 years. Now usmg the value of
T*C in Equation (18) the boundary conditions fiog, can be found asnl =1,m,=1ms=1m,=1,ms=1, and
meg=1 Using these values the total costs can bedfmﬁ:T(fc, mi,... me) =(0.56,1,1,1,1, 1, 1) =$33,928.26
per year, and this is local optimum solution. Theme, a forward search is conducted starting fﬁfax 0.21 (with
step size 0.01), andm = 1 (with step size 1) and the optimum solutioe o©btained in
C, (T, n™, nf™, nf™, nf*, nf™ n¥) =(0.32,1,1,1,1,1,1 =$32,373.8t per year. The detailed results of
rotational cycle policy are presented with numéricaues in Table 2. In this case, it is considetieat all six
products are produced in a single facility in aussge and they will be delivered using just-in-ti(der) policy.
Also, the raw materials for each product will belered following multiple ordering policies. Accondi to the
constraint given in Equations (14a) it can be deteed by using the data given in Table 1 that- 0.019/0.09 =

6
0.21. Also, it is observed thaZ(DFk /B,) =0.91< 1which satisfies the assumption for rotational eypblicy. The
k=1

results for the single facility lot sizing modets imperfect matching case presented in Table 2.

Table 1: Data set for single facility lot-sizing de

Parameters Product 1 Product 2 Product 3 Product 4 Product 5 Product 6
P (units/year) 14,000 10,500 15,000 10,900 9,000 (0[0:1)]
D¢ (units/year) 2,000 1,500 3,000 1,800 1,200 2,00
Ko ($/order) 150 100 150 200 200 300
Ks ($/setup) 50 10( 120 130 200 150
Hg ($/unit/year) 1 10 3.5 4 4 105
Hr ($/unit/year) 2 10 g 1% 2b 45
f 2 3 3 2.5 3 4
X (units) 100 100 15( 200 300 3%0
I (units) 25 30 50 40 60 5!
T, (years) 0.001 0.00R 0.002 0.003 0.g05 0.006

Table 2: Optimum results for raw materials of infpet matching case

Parameters Product 1 | Product2 | Product3 | Product4 | Product5 | Product 6
Tc*, years 0.32

Mk 1 2 2 1 1 1

n 6 4 6 2 1 1
Q. units/year 600 400 900 400 300 350
Qx«» Units/year 300 133 300 160 100 88
Cr(Tc,m, ...,m) $32,373.85

5. Conclusions

This research presents an operation policy of plgughain of a single facility lot-sizing model \wifust-in-time

(JIT) deliveries with imperfect matching situatioddso, the current research considered a sup@jncsystem that
operates under a reduced idle time, where the ptimduof a cycle of one product starts immediatgher the end
of production cycle of previous product. A set oblems are categorized as a serial system witked fjuantity

and a fixed delivery interval. The problem is sal\fer the optimum rotational cycle, optimum numiogrorders,

optimum batch sizes, and optimum numbers of shipreesluated to minimize the total system cost. @peration

policies prescribe the number of orders and thered quantities of raw materials from suppliersgdpiction

quantities, and number of shipments to the custerfe@ran infinite planning horizon. Prospectiveeash issues
that can be pursued further concerning the suppincsystem addressed in this research by incdipgréme

varying demand, variable production capacity aneé, taansportation costs, and multi-stage systems.
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